

400 V / 50 Hz	Biogas	
Electrical power	kW	64
Total thermal output	kW	88
Energy input	kW	179
Fuel consumption	Nm³/h	29,8
Electrical efficiency	%	35,9
Thermal efficiency with LT	%	50,7
Thermal efficiency without LT	%	49,0
Overall efficiency with LT	%	86,6

Engine: MAN Ty	/pe: E0834 LE302		Alternator: Leroy-Somer	Type: LS	SA 44.3 S4
No. of cylinders / configuration	on -	4 in line	Voltage / frequency	V/Hz	400/50
Engine speed	min ⁻¹	1500	PF	-	0,8L / 0,8C
Bore / stroke / displacement	$mm / mm / dm^3$	108/125/4,58	Alternator efficiency at rated power	%	94,6
Compression ratio	-	11	Max. ambient temperature	°C	40
Engine power max.	kW	68			
Spark plugs type	-	M14			
Lube oil consumption max.	kg/h	0,1			
Lube oil filling quantity max.	dm^3	13			
Energy halance					CHP unit performance parameters at

Energy balance					performance parameters at rated load
Load	%	100	75	50	100
ISO standard engine power	kW	68	51	34	68
Electrical power	kW	64	48	31	64
Engine cooling thermal output	kW	52	45	36	52
Exhaust gas thermal output (180 °C)	kW	30	22	17	30
Thermal output mixture cooling - HT	kW	6	4	0	6
Thermal output mixture cooling - LT	kW	3	1	2	3
Total thermal output	kW	88	71	53	88
Radiation heat max.	kW	15	13	8	15
Energy input 1)	kW	179	137	100	179
Fuel consumption	Nm³/h	29,8	22,8	16,7	29,8
Combustion air mass flow	kg/h	334	245	180	334
Exhaust gas mass flow, wet	kg/h	370	272	200	370
Exhaust temperature after turbocharger	°C	430	410	390	430
Alternator efficiency at PF=1	%	94,6	94,1	92,3	94,6
Electrical efficiency 1)	%	35,9	35,0	31,4	35,9
Thermal efficiency	%	49,0	51,9	53,0	49,0
Overall efficiency without LT	%	84,9	86,9	84,4	84,9

¹⁾ According to ISO 3046.

Fuel: Biogas

Min. methane number	-	100
Lower calorific value	MJ/Nm ³	21,6
Biogas composition CH ₄ /C0 ₂	% vol./% vol.	60/40
Gas pressure at gas regulation line inlet 1)	kPa	4÷10
Max. gas temperature	°C	30

¹⁾ The gas regulation line for MAN engines is standardly dimensioned at $4 \div 5$ kPa.

Heating water circuit

Thermal output	kW	88
Temperature gradient	°C / °C	88 / 70
Min. cooling medium volume flow	m³/h	4,31
Pressure loss of heating circuit 1)	bar	0,19
Heat transfer medium	-	Treated water
Max. operating pressure	bar	6

¹⁾ Pressure loss of all heating water circuit components at GENTEC CHP scope of supply.

LT mixture cooling circuit

Thermal output	kW	3
Temperature gradient	°C / °C	49 / 45
Cooling medium volume flow	m ³ /h	0,70
Max. allowable pressure loss 1)	kPa	-
Heat transfer medium concentration - glycol / water	% vol./% vol.	40/60
Max. operating pressure	bar	3
Dry cooler acoustic sound pressure level at 10 m 2)	dB(A)	65
Max. ambient temperature	°C	35

¹⁾ Pipework between CHP unit and dry cooler.

Emergency cooler

Thermal output	kW	88	
Heat transfer medium	-	Ethylene glycol/Water-40/60	
Max. allowable pressure loss 1)	kPa	-	
Dry cooler acoustic sound pressure level at 10 m 2)	dB(A)	65	
Max. ambient temperature	°C	35	

¹⁾ Pipework between CHP unit and dry cooler.

Ventilation and combustion air

Fan air volume flow 1)	m³/h	4300	
Max. allowable pressure loss of air duct 2)	Pa	-	
Max. inlet air temperature	°C	35	

¹⁾ At temperature 35 °C and pressure 101,3 kPa.

Exhaust gas system

Exhaust gas mass flow, wet	kg/h	370
Exhaust gas temperature at CHP unit outlet	°C	180
Max. allowable pressure loss 1)	mbar	-
Silencer flanges 2)	-	-

¹⁾ Exhaust gas pipe between CHP unit and outlet excluding components at GENTEC CHP scope of supply.

Emissions

CO	mg/Nm ³	<1000
NO _x	mg/Nm ³	<500

Correlation 5% O_2 .

Noise level		
CHP unit design inside container 2)	dB(A)	65
Exhaust gas noise at 1 meter distance to siler	ncer outlet 3) dB(A)	80
Input/Output air ventilation 1)	dB(A)	80/80

All values of the sound pressure level is considered in free field.

Dimensions and weight

Container dimensions L/W/H	mm	6010/1900/2438
Dry weight CHP unit design inside container	kg	5100

²⁾ The value of the sound pressure level is considered in free field.

²⁾ The value of the sound pressure level is considered in free field

²⁾ Air ducts between CHP unit and air inlet/air outlet.

²⁾ According to EN 1092-1.

¹⁾ Sound pressure level measured at 1 m distance from the CHP unit.

²⁾ Sound pressure level measured at 10 m distance from the container.

³⁾ On request, noise can be reduced by additional optimization of the standard silencer.

Standard conditions and tolerances

Atmospheric pressure	kPa	100	
Air temperature	°C	25	
Relative air humidity	%	30	
Tolerance for the electrical power	%	±3	
Tolerance for the usable thermal output	%	±7	
Tolerance for the specific fuel consumption	%	+5	

The energy balance parameters listed in this data sheet are related to the standard conditions.

Detailed technical specifications of components on demand.

Change of technical parameters and printing errors reserved.

Minimum requirements for gas quality

Parameter	Unit	Limit value	Unit	Comment
Methane number ¹⁾	MN	> 100	-	Consult GENTEC CHP in case of lower methane numbers
Lower calorific value	H_{u}	> 5	kWh / Nm³	
Chlorine concentration*	CI	< 80	mg / Nm³ _{CH4}	Chlorine exists as a volatile compound
Fluorine concentration*	F	< 40	mg / Nm³ _{CH4}	Fluorine exists as a volatile compound
Total Chlorine - Fluorine content*	Σ(Cl, F)	< 80	mg / Nm³ _{CH4}	
Dust content < 5 µm*		< 10	mg / Nm³ _{CH4}	
Oil vapour*		< 400	mg / Nm³ _{CH4}	Condensation must not occur in the mixture section
Volatile organic compounds*	VOC	< 25	mg / Nm³ _{CH4}	Without saturated hydrocarbon compounds
Silicion content ²⁾ *	Si	< 2	mg / Nm³ _{CH4}	In the case of high concentrations, please consult GENTEC CHP
Total sulphur content*	S	< 200	mg / Nm³ _{CH4}	Hydrogen sulfide is included in the total sulfur content
Hydrogen sulphide content ³⁾ *	H ₂ S	< 150	ppm	Consult GENTEC CHP in case of higher concentrations
		< 228	mg / Nm³ _{CH4}	
Ammonia content*	NH_3	< 40	ppm	
		< 30	mg / Nm³ _{CH4}	
Relative humidity	φ	< 60	%	Condensation must not occur in the mixture section
Temperature of the gas mixture after the gas mixer	T_G	10 ÷ 30	°C	
Hydrogen ⁴⁾ *	H ₂	< 2	% _{vol}	

^{*} If these components are also part of the intake air, they need to be allocated to the fuel gas as components. The limit values mentioned above yield a limit value for the total of components contained from intake air and fuel gas.

Release date	Created	Revision	Project / Offer
28.08.2023	EB	1	

¹⁾ For all fuel gases, except natural gas, please contact GENTEC CHP

²⁾ The engine oil may contain silicon due to additives (defoamers) being added. However, silicon may also have been diffused into the engine oil in form of dust due to insufficient air filtering or gas filtering. Therefore, the concentration of silicone in the gas shall always be evaluated together with the oil analyses. Depending on the occurrence in organic or inorganic form, high concentrations of silicone in the engine oil can result in increased component wear. The contents of wear elements such as iron, chromium and aluminum shall also be included in the evaluation in case of increased silicon content in the engine oil.

³⁾ If catalyst is used, maximum allowed hydrogen sulphide is < 3 ppm (5 mg/ Nm3)

⁴⁾ If hydrogen content exceeds 2 %vol please contact GENTEC CHP