

| 400 V / 50 Hz                    | Erdgas             |       |
|----------------------------------|--------------------|-------|
| Elektrische Nennleistung         | kW                 | 2535  |
| Thermische Nennleistung          | kW                 | 2551  |
| Feuerungswärmeleistung           | kW                 | 5751  |
| Brennstoffverbrauch              | Nm <sup>3</sup> /h | 608,9 |
| Elektrischer Wirkungsgrad        | %                  | 44,1  |
| Thermischer Wirkungsgrad mit LT  | %                  | 47,4  |
| Thermischer Wirkungsgrad ohne LT | %                  | 44,4  |
| Gesamtwirkungsgrad mit LT        | %                  | 91,5  |

| Motor: MTU Typ             | o: 20V4000L64        |              | Generator: Stamford          | Тур: |               |
|----------------------------|----------------------|--------------|------------------------------|------|---------------|
| Zylinderanzahl / anordnung | -                    | 20V          | Spannung / Frequenz          | V/Hz | 400/50        |
| Drehzahl                   | min <sup>-1</sup>    | 1500         | Cos φ                        | -    | 0,8L / 0,95C  |
| Bohrung / Hub / Hubraum    | $$ mm $/$ $$ dm $^3$ | 170/210/95,3 | Wirkungsgrad im Arbeitspunkt | %    | 97,5          |
| Verdichtungsverhältnis     | -                    | 14           | Max. Umgebungstemperatur     | °C   | 40            |
| Max. motorleistung         | kW                   | 2600         |                              |      |               |
| Zündkerzentyp              | -                    | M18          |                              |      |               |
| Max. Ölverbrauch           | dm³/h                | 0,44         |                              |      |               |
| Max. Ölfüllung             | dm <sup>3</sup>      | 350          |                              |      |               |
|                            |                      |              |                              |      | Leistungspara |

| Energiebilanz                                  |                    |       |       |       | meter des<br>gelieferten<br>BHKW |
|------------------------------------------------|--------------------|-------|-------|-------|----------------------------------|
| Motorlast                                      | %                  | 100   | 75    | 50    | 100                              |
| ISO Motorleistung                              | kW                 | 2600  | 1952  | 1309  | 2600                             |
| Elektrische Nennleistung                       | kW                 | 2535  | 1901  | 1268  | 2535                             |
| Thermische Leistung des Kühlkreises des Motors | kW                 | 1186  | 869   | 586   | 1186                             |
| Thermische Leistung der Abgase (120 °C)        | kW                 | 1212  | 996   | 749   | 1212                             |
| Thermische Leistung der Abgase (80 °C)         | kW                 | 153   | 115   | 78    | 153                              |
| Thermische Leistung der Gemischkühlung LT      | kW                 | 176   | 120   | 75    | 176                              |
| Thermische Leistung insg.                      | kW                 | 2551  | 1980  | 1413  | 2551                             |
| Abstrahlwärme des Motors                       | kW                 | 165   | -     | -     | 165                              |
| Feuerungswärmeleistung 1)                      | kW                 | 5751  | 4395  | 3052  | 5751                             |
| Brennstoffverbrauch                            | Nm <sup>3</sup> /h | 608,9 | 465,4 | 323,2 | 608,9                            |
| Menge an Verbrennungsluft                      | kg/h               | 12423 | 9300  | 6280  | 12423                            |
| Abgasvolumenstrom                              | kg/h               | 12853 | 9628  | 6508  | 12853                            |
| Abgasturbolader                                | °C                 | 423   | 452   | 488   | 423                              |
| Generatorwirkungsgrad be Cos φ=1               | %                  | 97,5  | 97,4  | 96,8  | 97,5                             |
| Elektrischer Wirkungsgrad 1)                   | %                  | 44,1  | 43,3  | 41,5  | 44,1                             |
| Thermischer Wirkungsgrad                       | %                  | 44,4  | 45,1  | 46,3  | 44,4                             |
| Gesamtwirkungsgrad ohne LT                     | %                  | 88,5  | 88,4  | 87,8  | 88,5                             |

<sup>1)</sup> Angabe nach ISO 3046

# Brennstoff: Erdgas

| Mindestmethanzahl                     | -                  | 80    |
|---------------------------------------|--------------------|-------|
| Unteren Heizwert                      | MJ/Nm <sup>3</sup> | 34    |
| Gasdruck in der Versorgungsleitung 1) | kPa                | 18÷25 |
| Max. Gastemperatur                    | °C                 | 30    |

<sup>1)</sup> Die Gasregelstrecke ist für MAN-Motoren standardmäßig mit 4 ÷ 5 kPa dimensioniert

### Heizwasserkreislauf

| Max. Betriebsdruck                          | bar               | 6          |
|---------------------------------------------|-------------------|------------|
| Wärmetragendes Medium                       | -                 | Heizwasser |
| Max. zulässiger Druckverlust 1)             | kPa               | 50         |
| Min. durchsatz der Kühlflüssigkeit          | m <sup>3</sup> /h | 112,66     |
| Temperaturspreizung des Heizwasserkreislauf | °C / °C           | 90 / 70    |
| Thermische Leistung                         | kW                | 2551       |

<sup>1)</sup> Heizwasserkreislauf außerhalb der GENTEC CHP-Lieferung

| L | T-f | (re | is |
|---|-----|-----|----|
|---|-----|-----|----|

| Thermische Leistung                                                          | kW                | 176       |
|------------------------------------------------------------------------------|-------------------|-----------|
| Temperaturspreizung des LT-Kreises                                           | °C / °C           | 46,5 / 43 |
| Durchsatz der Kühlflüssigkeit                                                | m <sup>3</sup> /h | 47,10     |
| Max. zulässiger Druckverlust 1) Konzentration des Wärmeübertragungsmediums - | kPa               | -         |
| Ethylenglykol / Wasser                                                       | Vol-%/Vol-%       | 40/60     |
| Betriebsdruck Max.                                                           | bar               | 6         |
| Schalldruck des Trockenkühlers in 10 m 2)                                    | dB(A)             | 65        |
| Max. Temperatur der Umgebungsluft                                            | °C                | 35        |

<sup>1)</sup> Rohrabschnitt zwischen dem BHKW und dem Trockenkühler

## Lüftungs- und Verbrennungsluft

| Lüfterdurchsatz 1)                                | m <sup>3</sup> /h | 48400 |
|---------------------------------------------------|-------------------|-------|
| Max. zulässiger Druckverlust (Ein- + Austritt) 2) | Pa                | -     |
| Max. Ansauglufttemperatur                         | °C                | 35    |

<sup>1)</sup> Bei einer Lufttemperatur von 35 ° C und Druck von 101,3 kPa.

### Abgasstrecke

| Durchsatz von Abgasen, feucht      | kg/h | 12853 |
|------------------------------------|------|-------|
| Abgastemperatur am BHKW-Austritt   | °C   | 80    |
| Max. zulässiger Druckverlust 1)    | mbar | -     |
| Flansche für Abgasschalldämpfer 2) | -    | -     |

<sup>1)</sup> Rohrleitungsabschnitte zwischen den von GENTEC CHP gelieferten BHKW-Komponenten

#### Emissionen mit SCR

| CO              | mg/Nm <sup>3</sup> | <150 |
|-----------------|--------------------|------|
| NO <sub>x</sub> | mg/Nm <sup>3</sup> | <50  |

#### bei 5% O<sub>2</sub> in Abgasen

## Geräuschparameter

| BHKW in Container-Ausführung 1)             | dB(A) | 70    |
|---------------------------------------------|-------|-------|
| Abgasstrecke in Entfernung von 1 m nach dem |       |       |
| Flansch des Schalldämpfers 3)               | dB(A) | 80    |
| Lüftungseintritt/-austritt 1)               | dB(A) | 80/80 |

Alle Geräuschparameter werden im freien Feld berücksichtigt.

## Abmessungen und Gewicht

| Abmessungen des Containers L/B/H                 | mm    | 15400/3000/2900 |  |
|--------------------------------------------------|-------|-----------------|--|
| Trockengewicht des BHKW in der Containerausführu | nç kg | 51000           |  |

<sup>2)</sup> Der Schalldruckpegel wird im freien Feld betrachtet

<sup>2)</sup> HLK-Rohrleitungsabschnitte zwischen dem BHKW und dem Ein-/Austritt.

<sup>2)</sup> gem. EN 1092-1

<sup>1)</sup> Schalldruckpegel, gemessen im Abstand von 1 m vom BHKW.

<sup>2)</sup> Schalldruckpegel, gemessen im Abstand von 10 m vom Container.

<sup>3)</sup> Auf Anfrage können die Geräuschemissionen durch zusätzliche Optimierung des Standardschalldämpfers reduziert werden.

### Technisches Datenblatt des Blockheizkraftwerkes

#### **KE-MTUNG 2500-BEE**

#### Betriebsbedingungen und Toleranzen

| Umgebungsdruck                     | kPa | 100 |
|------------------------------------|-----|-----|
| Temperatur                         | °C  | 25  |
| Relative Luftfeuchtigkeit          | %   | 30  |
| Toleranz der elektrischen Leistung | %   | ±3  |
| Thermische Leistung - Toleranz     | %   | ±8  |
| Brennstoffverbrauch - Toleranz     | %   | +5  |

Die in diesem Datenblatt aufgeführten Leistungsparameter beziehen sich auf die Betriebsbedingungen.

Detaillierte technische Spezifikationen der Teile auf Anfrage.

Änderung der technischen Parameter und Druckfehler vorbehalten.

## Mindestanforderungen an die Gasqualität

| Parameter                                          | Symbol          | Genzwerte | Einheit                 | Bemerkungen                                                                     |
|----------------------------------------------------|-----------------|-----------|-------------------------|---------------------------------------------------------------------------------|
| Methanzahl <sup>1)</sup>                           | MZ              | > 80      | -                       | Niedrigere Methanzahlen nach Rücksprache mit GENTEC CHP                         |
| Heizwert                                           | $H_{u}$         | > 8       | kWh / Nm³               |                                                                                 |
| Chlorgehalt*                                       | CI              | < 10      | mg / Nm³ <sub>CH4</sub> | Chlor liegt als flüchtige Verbindung vor                                        |
| Fluorgehalt*                                       | F               | < 5       | mg / Nm³ <sub>CH4</sub> | Fluor liegt als flüchtige Verbindung vor                                        |
| Gesamt - Chlor - Fluor*                            | Σ(Cl, F)        | < 10      | mg / Nm³ <sub>CH4</sub> |                                                                                 |
| Staubgehalt < 3 μm*                                |                 | < 5       | mg / Nm³ <sub>CH4</sub> |                                                                                 |
| Öldampf*                                           |                 | < 0,4     | mg / Nm³ <sub>CH4</sub> | In der Gemischstrecke darf keine Kondensation auftreten                         |
| Lösungsmittel in Verbrennungsluft*                 | VOC             | -         | mg / Nm³ <sub>CH4</sub> | Bei höherer Konzentration Rücksprache mit GENTEC CHP                            |
| Siliziumgehalt <sup>2)</sup> *                     | Si              | < 1       | mg / Nm³ <sub>CH4</sub> | Bei höherer Siliziumkonzentrationen Rücksprache mit GENTEC CHP                  |
| Gesamtschwefelgehalt*                              | S               | < 30      | mg / Nm³ <sub>CH4</sub> | Im Gesamtschwefel ist Schwefelwasserstoff mitenhalten                           |
| Schwefelwasserstoff <sup>3)*</sup>                 | $H_2S$          | < 3       | ppm                     | Bei höherer Schwefelwasserstoffkonzentration Rücksprache mit GENTEC CHP         |
|                                                    |                 | < 5       | mg / Nm³ <sub>CH4</sub> |                                                                                 |
| Ammoniakgehalt*                                    | NH <sub>3</sub> | < 70      | ppm                     |                                                                                 |
|                                                    |                 | < 53      | mg / Nm³ <sub>CH4</sub> |                                                                                 |
| Relative Feuchte                                   | φ               | < 80      | %                       | In der Gemischsstrecke darf keine Kondensation auftreten                        |
| Temperatur des Gasgemisches nach Gas / Luftmischer | $T_G$           | 5 ÷ 45    | °C                      |                                                                                 |
| Wasserstoff <sup>4)</sup> *                        | H <sub>2</sub>  | < 2       | % <sub>vol</sub>        | Warrana na antana musa na alama tu usanda na Dia ahan mananata na Ousanamus nta |

<sup>\*</sup> Sind diese Komponenten auch in der Ansaugluft enthalten, müssen sie dem Brenngas als Komponenten zugerechnet werden. Die oben genannten Grenzwerte ergeben einen Grenzwert für die Summe der in der Ansaugluft und im Brenngas enthaltenen Komponenten.

| Freigegeben am | Erstellt von | Revision | Projekt/Angebot |
|----------------|--------------|----------|-----------------|
| 28.08.2023     | МО           | 1        |                 |

<sup>1)</sup> Für alle Brenngase, außer Erdgas, wenden Sie sich bitte an GENTEC CHP

<sup>2)</sup> Silizium kann im Motorenöl durch die Zugabe von Zusatzstoffen (Entschäumer) enthalten sein. Silizium kann aber auch in Form von Staub aufgrund einer ungenügenden Luftfilterung ins Motorenöl eingetragen werden. Daher muss die Siliziumkonzentration im Gas immer zusammen mit den Ölanalysen bewertet werden. Hohe Siliziumkonzentrationen im Motorenöl können, in Abhängigkeit des Auftretens in organischer oder anorganischer Form, zu erhöhtem Bauteilverschleiß führen. Bei erhöhtem Siliziumgehalt im Motorenöl müssen auch die Gehalte der Verchleißelemente Eisen, Chrom und Aluminium mitbewertet 3) Wenn ein Katalysator verwendet wird, darf Schwefelwasserstoff höchstens < 3 ppm (5 mg/Nm3) betragen.

<sup>4)</sup> Wenn der Wasserstoffgehalt 2 %vol überschreitet, wenden Sie sich bitte an GENTEC CHP